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find a set of locations and the corresponding voltages that give us
the best correction to the surface thermal distortions of the primary
mirror under a given type of thermal loads; the other is to find one
set of locations and corresponding voltages that provide the best
correction to the surface thermal distortions caused by all of the
four different kinds of thermal loads. The two types of problems
are difficult and computationally intensive. The second type is a
more challenging, multicriterion optimization problem. The search
space for these problems is highly multimodal, and conventional
point-by-point optimization techniques usually get stuck at the lo-
cal optimum, but population-based GAs are very good at searching
such space and more likely get better results than the traditional
techniques. The search space of 1.38 x 103 different sets of ac-
tuator locations for the case of 121 piezoelectric actuators is much
larger than that for the case of 30 piezoelectricactuators, but the GA
version 3 still converged very fast and finally found a very good set
of actuator locations that can be used to reduce all of the four kinds
of thermal distortions. The results show that the two modifications
employed in this study significantly improve the performance of
GAs. The current version of GAs are more effective than the pre-
ceding versions in solving optimization problems of determining
actuator locations for thermal distortion control.

The problems for this study are computationally intensive. Get-
ting one solution using the GAs with the limit of 15,000 evalua-
tions for the second optimization problem took more than a week.
GAs are very general and robust optimization methods that can be
applied to virtually any optimization problem. Parallel GAs can
significantly reduce the time and be more natural to imitate the
evolution of the nature, and so our current research is to develop
parallel GAs.
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Introduction

LASTIC systems subjected to concentrated and distributed

types of nonconservative follower forces are always encoun-
teredinengineeringpractices,such as in stability analysisof rockets,
missiles, slenderspacestructures,pipes conveying fluid, automobile
disk, and drum brakes. A literature review indicates that the non-
conservative stability of nonuniform structures was usually solved
by the Galerkin method,! the finite difference method,? the finite
element method (FEM),? and the transfer matrix method.* It is dif-
ficult to find the exact analytical solutions for stability of tapered
structures with arbitrary boundary conditions. In this Note a suc-
cessful attempt is made to present an efficient analytical method
for the nonconservative stability of tapered columns. The closed-
form solutions for the stability of two types of nonuniform columns
subjected to an end concentrated and variably distributed follower
forces are derived for the first time. The advantage of the proposed
method is that the resulting characteristicequation for stability of a
nonuniformcolumn with any kind of two-end supportconfiguration
can be conveniently determined from a second-order determinant.
As a consequence, the decrease in the determinant order, as com-
pared with previously developed procedures, leads to significant
savings in the computational effort.

Theory

A column with variable cross section under the combined action
of an end concentrated follower force and variably distributed fol-
lower forces along the column is shown in Fig. 1. Considering the
element shown in Fig. 2 and according to the d’ Alembert principle,
all of the forces acting on the element should satisfy the equilibrium
conditions. From Y F, =0, Y F, =0, and using the method of
separation of variables, one obtains

d? d*X (x) X (x)
Q |:K()C) Ti| + N()C)T - m(x)a)zX(x) =0 (1)

where X (x) is the mode shape function, w is the circular natural
frequency, m(x) is the mass per unit length of the column, K (x) is
the flexural stiffness, and N (x) is the axial force.

Obviously, the solution of Eq. (1) is dependent on the expres-
sion of K(x), N(x), and m(x). As suggested by Li et al.>% and
Li,” the functions for describing the variations of K (x), N (x), and
m(x), for many cases of structural members are power functions
and exponential functions, which are considered in this Note.
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Case 1

The functions for describing the distributions of the flexural stiff-
ness, axial force, and mass intensity are expressed as

K(x) = Ko[1+ B(x/L)1"*, N(x) = Noll + B(x/L)]"*+?
m(x) = mo[l + B(x/L)]" 2

where K, Ny, and m, denote the flexural stiffness, axial force, and
mass per unit length of the column at x =0, respectively; L is the
length of the column.

Substituting Eq. (2) into Eq. (1) and setting & = [1 4+ B(x/L)]
results in

d*X (&) X&) NoL?
T P+ |:(n +4)(n+3) + Koﬂz}
&EXE) mpwL B
X & Ko XE) =0 (3)
The general solution of Eq. (3) can be written as
4
X)) =Y Crexp(ré) @)

i=1
where

Fi234 = —%(” +4i\/?)

:l:\/%(n +4iﬁ)2 — %(yl + yl2 —461)
e = —a%/ﬂ“, (xf = ﬁlua)4L4/KU

f=”+4+Y1—(¥2/ﬂ2, P=40f12/ﬂ4_62/3

= i/—q/2+ (q/2?+ (p/3)?

+ i/—q/Z -V (@/2)*+(p/3)’

q=(2/p)[4(n + 4 — as/B?) +4c/3] — 2¢° /27

c=m+4Hn+3)+a/p o = NoL*/K,

The sign before /f is the same as that before /(y; —4e,) if
(n+4)y, > c; otherwise, the signs should be different.

Case 2
The distributions of flexural stiffness, axial force, and mass
intensity are given by

K (x) = Ky explb(x/L)], N(x) = Npexplb(x/L)]

m(x) = moexp[b(x/L)] (5)
Substituting Eq. (5) into Eq. (1) leads to
d*X b &#*X
@ , b &Xw
dx4 L dx3
2
b No | d2X(x)  rmgw?
— —_ — X =0 6
+|:<L> * K0i| dx? Ky ) ©

The general solutions of Eq. (6) can also be expressed in the form
of Eq. (4), but for this case we have

Fi234 = —%(b/L + m)
/LN 4T de) D)

where e = —ﬁzoa)z/KU and y, is already defined; the other parame-
ters in Eq. (7) are

g =4e(d/3 — Ny/Ky) —2d%/27,

p=4de—d*/3
d = (b/L)* + No/K,

If 2b/L > d, the sign before /(y; — Ny/K,) is the same as that
before \/(ylz — 4e); otherwise, the signs should be different.

Substituting b =0 into Egs. (5) and (6) results in a special case
that represents a uniform cantilever column subjected to an end
concentrated follower force. The general solutions for this special
case are found as

X (x) = C,sink;x + C, cosk;x + Cssinhk,x + C, coshk,x (8)

where

k= VI G +1, k= ay V1 K/t —1

22 = N,y/2K,, k* = ingw?/Ko

Sy (x)(i =1~4) are used here to denote the linearly independent
solutions of Egs. (3) and (6); then the general solution for cases 1
and 2 can be expressed as

4
X =Y CiSix) ©)

i=1

where C; are four integration constants to be determined from the
boundary conditions.

To simplify the analysis, based on the derived solutions just
presented, four linearly independent fundamental solutions S; (x)
are chosen such that they satisfy the following normalization con-
ditions at the origin of the co-ordinate system:

5,00 S0 §/0) 57(0) 1000
500 50 S0 50 | _ [0 10 0] (10)
S5(0)  S;(0) SY(0) S;(0) 0010
540)  S;(0) S0 Sy(0) LO 00 1

where the primes indicate differentiation with respect to the coor-
dinate variable x. S;(x)(i =1~ 4) can be easily constructed by

sw] [s0 50 so so] [so
SO | _ |80 SO S0 o [So | o)
S| SO S0 S0 50| | S

o] [s0 50 so so| |sw)

The advantage of using the fundamental solutions S'[ (x) is that
the mode shape functions can be easily expressed in terms of the
initial parameters and S;(x) as follows:
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X (x) = X(0)S;(x) + ¢(0)S5(x) — [M(0)/K (0)]S3(x)

—[1/KO)[Q(0) — n(0)M(0)]S4(x) (12)
where u(x) = K'(x)/K (x), X(0), ¢(0), M(0), and Q(0) are the ini-
tial displacement, slope, bending moment, and shear force at x =0,
respectively.

Because two of the four initial parameters are known for any
type of support condition, it is easy to establish the characteristic
equation for the nonconservative stability of a nonuniform column
with classical or nonclassical boundary conditions as follows:

1) A nonuniformcolumn with hinged-hingedend conditions. The
boundary conditions for this case are given by

X(0) =0, M©)=0 (13)

X(L) =0, M(L)=0 or X"(Ly=0 (14

Applying the boundary condition at x = 0 to Eq. (12) results in
X (@) = p(0)5:(x) = [Q(0)/K (0)]S4(x) (15)

Using the boundary conditions at x = L and Eq. (15), one obtains
the characteristic equation

Sy(L)S; (L) — S(L)Su(L) =0 (16)

2) A nonuniform column with clamped-free (C-F) ends (shown
in Fig.1) and a concentrated mass m, attached at the free end. The
boundary conditions for this case are given by

M) =0, 0(0) = —mow’X (0) a7

X (L) =0, o(L)=0 (18)

Applying the boundary conditions at x =0 to Eq. (12) leads to
Xx) = XO{S1(x) + [mee?/K0)]S:(0)} + oS, (x)  (19)

The characteristic equation can be established using Egs. (18) and
(19) as follows:

S{L{Si (L) + [mow? /K (0)]S4(L)}

=5 I{S;(L) + [mo?/K ]S, L)} =0 (20)

Setting my =0 resultsin the characteristicequation of a nonuniform
column with C-F ends and without the concentrated mass.

Numerical Example

A nonuniform cantilever column subjected to an end-
concentrated follower force N, and variably distributed follower
forces N(x) along the column is shown in Fig. 1. The variations
in flexural stiffness, axial force, and mass are described by Eq. (2).
The four linearly independent solutions for this example are given
in Eq. (4), and the fundamental solutions can be constructed by
Eq. (11); the characteristic equation for this case is Eq. (16).

The critical buckling force can be written as Ny, =
a(B) [K(L)/L?], where a(B) is a coefficient depending on the taper
ratio of a column if the boundary conditions and the distributionsof
mass, stiffness, and axial forces are given.

When 8=0.2, 0.5, it is determined that «(8) =9.9112,3.6673,
respectively, illustrating the effect of taper ratio of the nonuniform
column on its critical buckling force is significant. The FEM with
cubic approximationof displacementsis also adopted to conductthe
stability analysis for comparison purposes. The column is divided
into 40 uniform elements for the stability analysis. It is found that
when $=0.2,0.5, ¢(8) =9.9111,3.6672,respectively. Obviously,
the results obtained from the proposed method and FEM are in close
agreement, but it is observed that the proposed method takes less
computational time than FEM, illustrating that the present method
is efficient, convenient,and accurate.

The effect of the taper ratio on the critical buckling force is shown
in Fig. 3. It is evident that the critical buckling force decreases as
the taper ratio of the column increases.

If there is a concentrated mass m attached at the free end, the
characteristic equation for this case is given in Eq. (20). The influ-
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Fig.3 Effect of the taper ratio on the critical buckling force.
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Fig. 4 Effect of the end-concentrated mass on the critical buckling
force.

ence of the end-concentrated mass on the critical buckling force is
shown in Fig. 4. It is clear that the critical buckling force decreases
as the ratio of m( to M increases, where M is the total mass of the
column.

Conclusions

The closed-form stability solutions for two types of nonuniform
columns and variably distributed followers are derived for the first
time. The advantageof the proposedmethod is that the characteristic
equation expressed in terms of the fundamental solutions for stabil-
ity of a nonuniform column with arbitrary boundary conditions can
be conveniently determined from a second-order determinant. As a
result, the decrease in the determinantorder leads to significant sav-
ings in the computational effort. The numerical example shows that
the results from the proposed method are in good agreement with
those from FEM, but the proposed method takes less computational
time than FEM, illustrating that the present procedure is an exact
and efficient method.
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