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� nd a set of locations and the corresponding voltages that give us
the best correction to the surface thermal distortions of the primary
mirror under a given type of thermal loads; the other is to � nd one
set of locations and corresponding voltages that provide the best
correction to the surface thermal distortions caused by all of the
four different kinds of thermal loads. The two types of problems
are dif� cult and computationally intensive. The second type is a
more challenging,multicriterionoptimization problem. The search
space for these problems is highly multimodal, and conventional
point-by-point optimization techniques usually get stuck at the lo-
cal optimum, but population-basedGAs are very good at searching
such space and more likely get better results than the traditional
techniques. The search space of 1:38 £ 1054 different sets of ac-
tuator locations for the case of 121 piezoelectric actuators is much
larger than that for the case of 30 piezoelectricactuators,but the GA
version 3 still convergedvery fast and � nally found a very good set
of actuator locations that can be used to reduce all of the four kinds
of thermal distortions. The results show that the two modi� cations
employed in this study signi� cantly improve the performance of
GAs. The current version of GAs are more effective than the pre-
ceding versions in solving optimization problems of determining
actuator locations for thermal distortion control.

The problems for this study are computationally intensive. Get-
ting one solution using the GAs with the limit of 15,000 evalua-
tions for the second optimization problem took more than a week.
GAs are very general and robust optimization methods that can be
applied to virtually any optimization problem. Parallel GAs can
signi� cantly reduce the time and be more natural to imitate the
evolution of the nature, and so our current research is to develop
parallel GAs.
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Introduction

E LASTIC systems subjected to concentrated and distributed
types of nonconservative follower forces are always encoun-

tered in engineeringpractices,suchas in stabilityanalysisof rockets,
missiles,slenderspacestructures,pipes conveying� uid, automobile
disk, and drum brakes. A literature review indicates that the non-
conservative stability of nonuniform structures was usually solved
by the Galerkin method,1 the � nite difference method,2 the � nite
element method (FEM),3 and the transfer matrix method.4 It is dif-
� cult to � nd the exact analytical solutions for stability of tapered
structures with arbitrary boundary conditions. In this Note a suc-
cessful attempt is made to present an ef� cient analytical method
for the nonconservative stability of tapered columns. The closed-
form solutions for the stability of two types of nonuniformcolumns
subjected to an end concentrated and variably distributed follower
forces are derived for the � rst time. The advantage of the proposed
method is that the resulting characteristicequation for stability of a
nonuniformcolumn with any kind of two-end supportcon� guration
can be conveniently determined from a second-order determinant.
As a consequence, the decrease in the determinant order, as com-
pared with previously developed procedures, leads to signi� cant
savings in the computationaleffort.

Theory
A column with variable cross section under the combined action

of an end concentrated follower force and variably distributed fol-
lower forces along the column is shown in Fig. 1. Considering the
element shown in Fig. 2 and according to the d’Alembert principle,
all of the forces acting on the element should satisfy the equilibrium
conditions. From

P
Fx D 0,

P
Fy D 0, and using the method of

separation of variables, one obtains

d2

dx2

µ
K .x/

d2 X .x/

dx2

¶
C N .x/

d2 X .x/

dx2
¡ Nm.x/!2 X .x/ D 0 (1)

where X .x/ is the mode shape function, ! is the circular natural
frequency, Nm.x/ is the mass per unit length of the column, K .x/ is
the � exural stiffness, and N .x/ is the axial force.

Obviously, the solution of Eq. (1) is dependent on the expres-
sion of K .x/, N .x/, and Nm.x/. As suggested by Li et al.5;6 and
Li,7 the functions for describing the variations of K .x/, N .x/, and
Nm.x/, for many cases of structural members are power functions
and exponential functions,which are considered in this Note.
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Fig. 1 Nonuniform column with C-F ends.

Fig. 2 Element.

Case 1
The functions for describing the distributionsof the � exural stiff-

ness, axial force, and mass intensity are expressed as

K .x/ D K0[1 C ¯.x=L/]n C 4; N .x/ D N0[1 C ¯.x=L/]n C 2

Nm.x/ D Nm0[1 C ¯.x=L/]n (2)

where K0, N0, and Nm0 denote the � exural stiffness, axial force, and
mass per unit length of the column at x D 0, respectively; L is the
length of the column.

Substituting Eq. (2) into Eq. (1) and setting » D [1 C ¯.x=L/]
results in
d4 X .» /

d» 4
C 2.n C 4/

d3 X .» /

d» 3
C

µ
.n C 4/.n C 3/ C

N0 L2

K0¯2

¶

£ d2 X .» /

d» 2
¡

Nm0!2L4

K0¯4
X .» / D 0 (3)

The general solution of Eq. (3) can be written as

X .» / D
4X

i D 1

Ci exp.ri »/ (4)

where
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f D n C 4 C y1 ¡ ®2
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¯
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y1 D 3

q
¡q=2 C

p
.q=2/2 C .p=3/3

C 3

q
¡q=2 ¡

p
.q=2/2 C .p=3/3

q D
¡
®2

1

¯
¯4

¢£
4
¡
n C 4 ¡ ®2

¯
¯2

¢
C 4c=3
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c D .n C 4/.n C 3/ C ®2

¯
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2 D N0 L 2̄ K0

The sign before
p

f is the same as that before
p

.y2
1 ¡ 4e1/ if

.n C 4/y1 > c; otherwise, the signs should be different.

Case 2
The distributions of � exural stiffness, axial force, and mass

intensity are given by

K .x/ D K0 exp[b.x=L/]; N .x/ D N0 exp[b.x=L/]

Nm.x/ D Nm0 exp[b.x=L/] (5)

Substituting Eq. (5) into Eq. (1) leads to
d4 X .x/

dx4
C 2

b

L
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C
µ³
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L
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C
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X .x/ D 0 (6)

The general solutions of Eq. (6) can also be expressed in the form
of Eq. (4), but for this case we have

r1;2;3;4 D ¡ 1
2

¡
b=L §
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y1 ¡ N0=K0

¢
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1
16
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b=L §
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(7)

where e D ¡ Nm0!2=K0 and y1 is already de� ned; the other parame-
ters in Eq. (7) are

q D 4e.d=3 ¡ N0=K0/ ¡ 2d3=27; p D 4e ¡ d2=3

d D .b=L/2 C N0=K0

If 2b=L > d , the sign before
p

.y1 ¡ N0=K0/ is the same as that
before

p
.y2

1 ¡ 4e/; otherwise, the signs should be different.
Substituting b D 0 into Eqs. (5) and (6) results in a special case

that represents a uniform cantilever column subjected to an end
concentrated follower force. The general solutions for this special
case are found as

X .x/ D C1 sin k1x C C2 cos k1x C C3 sinh k2x C C4 cosh k2x (8)

where

k1 D ¸1

qp
1 C .k=¸1/4 C 1; k2 D ¸1

qp
1 C .k=¸1/4 ¡ 1

¸2
1 D N0=2K0; k4 D Nm0!2̄ K0

S1.x/.i D 1 » 4/ are used here to denote the linearly independent
solutions of Eqs. (3) and (6); then the general solution for cases 1
and 2 can be expressed as

X .x/ D
4X

i D 1

Ci Si .x/ (9)

where Ci are four integration constants to be determined from the
boundary conditions.

To simplify the analysis, based on the derived solutions just
presented, four linearly independent fundamental solutions NSi .x/
are chosen such that they satisfy the following normalization con-
ditions at the origin of the co-ordinate system:

2
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3
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3
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where the primes indicate differentiation with respect to the coor-
dinate variable x. NSi .x/.i D 1 » 4/ can be easily constructed by
2
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The advantage of using the fundamental solutions NSi .x/ is that
the mode shape functions can be easily expressed in terms of the
initial parameters and NSi .x/ as follows:
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X .x/ D X .0/ NS1.x/ C ’.0/ NS2.x/ ¡ [M.0/=K .0/] NS3.x/

¡ [1=K .0/][Q.0/ ¡ ¹.0/M.0/] NS4.x/ (12)

where ¹.x/ D K 0.x/=K .x/, X(0), ’(0), M (0), and Q.0/ are the ini-
tial displacement, slope, bending moment, and shear force at x D 0,
respectively.

Because two of the four initial parameters are known for any
type of support condition, it is easy to establish the characteristic
equation for the nonconservativestability of a nonuniform column
with classical or nonclassicalboundary conditions as follows:

1) A nonuniformcolumn with hinged-hingedend conditions.The
boundary conditions for this case are given by

X .0/ D 0; M .0/ D 0 (13)

X .L/ D 0; M.L/ D 0 or X 00.L/ D 0 (14)

Applying the boundary condition at x D 0 to Eq. (12) results in

X .x/ D ’.0/ NS2.x/ ¡ [Q.0/=K .0/] NS4.x/ (15)

Using the boundary conditions at x D L and Eq. (15), one obtains
the characteristic equation

NS2.L/ NS00
4 .L/ ¡ NS00

2 .L/ NS4.L/ D 0 (16)

2) A nonuniform column with clamped-free (C-F) ends (shown
in Fig.1) and a concentratedmass m0 attached at the free end. The
boundary conditions for this case are given by

M.0/ D 0; Q.0/ D ¡m0!2 X .0/ (17)

X .L/ D 0; ’.L/ D 0 (18)

Applying the boundary conditions at x D 0 to Eq. (12) leads to

X .x/ D X .0/
©

NS1.x/ C
£
m0!2̄ K .0/

¤
NS4.x/

ª
C ’.0/ NS2.x/ (19)

The characteristic equation can be established using Eqs. (18) and
(19) as follows:
NS 0
2.L/

© NS1.L/ C
£
m0!

2̄ K .0/
¤ NS4.L/

ª

¡ NS2.L/
©

NS 0
1.L/ C

£
m0!

2̄ K .0/
¤

NS0
4.L/

ª
D 0 (20)

Setting m0 D 0 results in the characteristicequationof a nonuniform
column with C-F ends and without the concentratedmass.

Numerical Example
A nonuniform cantilever column subjected to an end-

concentrated follower force N0 and variably distributed follower
forces N .x/ along the column is shown in Fig. 1. The variations
in � exural stiffness, axial force, and mass are described by Eq. (2).
The four linearly independent solutions for this example are given
in Eq. (4), and the fundamental solutions can be constructed by
Eq. (11); the characteristic equation for this case is Eq. (16).

The critical buckling force can be written as N0;cr D
®.¯/ [K .L/=L2], where ®.¯/ is a coef� cient dependingon the taper
ratio of a column if the boundary conditionsand the distributionsof
mass, stiffness, and axial forces are given.

When ¯ D 0:2, 0.5, it is determined that ®.¯/ D 9.9112, 3.6673,
respectively, illustrating the effect of taper ratio of the nonuniform
column on its critical buckling force is signi� cant. The FEM with
cubic approximationof displacementsis also adopted to conduct the
stability analysis for comparison purposes. The column is divided
into 40 uniform elements for the stability analysis. It is found that
when ¯ D 0.2, 0.5, ®.¯/ D 9.9111, 3.6672, respectively.Obviously,
the resultsobtained from the proposedmethodand FEM are in close
agreement, but it is observed that the proposed method takes less
computational time than FEM, illustrating that the present method
is ef� cient, convenient, and accurate.

The effect of the taper ratio on the criticalbuckling force is shown
in Fig. 3. It is evident that the critical buckling force decreases as
the taper ratio of the column increases.

If there is a concentrated mass m0 attached at the free end, the
characteristic equation for this case is given in Eq. (20). The in� u-

Fig. 3 Effect of the taper ratio on the critical buckling force.

Fig. 4 Effect of the end-concentrated mass on the critical buckling
force.

ence of the end-concentratedmass on the critical buckling force is
shown in Fig. 4. It is clear that the critical buckling force decreases
as the ratio of m0 to M increases, where M is the total mass of the
column.

Conclusions
The closed-form stability solutions for two types of nonuniform

columns and variably distributed followers are derived for the � rst
time.The advantageof theproposedmethod is that thecharacteristic
equation expressed in terms of the fundamentalsolutions for stabil-
ity of a nonuniform column with arbitrary boundary conditions can
be convenientlydetermined from a second-orderdeterminant.As a
result, the decrease in the determinantorder leads to signi� cant sav-
ings in the computationaleffort. The numerical example shows that
the results from the proposed method are in good agreement with
those from FEM, but the proposed method takes less computational
time than FEM, illustrating that the present procedure is an exact
and ef� cient method.
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